Search results for "Catalytic Domain"

showing 10 items of 80 documents

Heavy enzymes and the rational redesign of protein catalysts

2019

Abstract An unsolved mystery in biology concerns the link between enzyme catalysis and protein motions. Comparison between isotopically labelled “heavy” dihydrofolate reductases and their natural‐abundance counterparts has suggested that the coupling of protein motions to the chemistry of the catalysed reaction is minimised in the case of hydride transfer. In alcohol dehydrogenases, unnatural, bulky substrates that induce additional electrostatic rearrangements of the active site enhance coupled motions. This finding could provide a new route to engineering enzymes with altered substrate specificity, because amino acid residues responsible for dynamic coupling with a given substrate present…

010402 general chemistryProtein Engineering01 natural sciencesBiochemistryCatalysisEnzyme catalysisisotope effectsCatalytic DomainDihydrofolate reductaseMolecular BiologyAlcohol dehydrogenasechemistry.chemical_classificationalcohol dehydrogenasesCarbon Isotopesdihydrofolate reductasesbiologyBacteriaNitrogen Isotopes010405 organic chemistryConceptOrganic ChemistryAlcohol DehydrogenaseActive siteSubstrate (chemistry)Protein engineeringDeuteriumCombinatorial chemistrymolecular dynamics0104 chemical sciencesKineticsTetrahydrofolate Dehydrogenaseenzyme engineeringEnzymechemistrybiology.proteinBiocatalysisMolecular MedicineConcepts
researchProduct

Cyclic pentapeptide cRGDfK enhances the inhibitory effect of sunitinib on TGF-β1-induced epithelial-to-mesenchymal transition in human non-small cell…

2020

AbstractIn human lung cancer progression, the EMT process is characterized by the transformation of cancer cells into invasive forms that migrate to other organs. Targeting to EMT-related molecules is emerging as a novel therapeutic approach for the prevention of lung cancer cell migration and invasion. Traf2- and Nck-interacting kinase (TNIK) has recently been considered as an anti-proliferative target molecule to regulate the Wnt signaling pathway in several types of cancer cells. In the present study, we evaluated the inhibitory effect of a tyrosine kinase inhibitor sunitinib and the integrin-αVβ3targeted cyclic peptide (cRGDfK) on EMT in human lung cancer cells. Sunitinib strongly inhib…

0301 basic medicineCell signalingIntegrinsLung NeoplasmsProtein ExpressionCancer TreatmentSmad ProteinsSignal transductionLung and Intrathoracic TumorsTyrosine-kinase inhibitorAdenosine Triphosphate0302 clinical medicineCarcinoma Non-Small-Cell LungCatalytic DomainAntineoplastic Combined Chemotherapy ProtocolsMedicine and Health SciencesSunitinibWnt Signaling PathwayWNT Signaling CascadeMultidisciplinarySunitinibChemistryQRWnt signaling pathwaySignaling cascadesDrug SynergismExtracellular MatrixMolecular Docking SimulationOncology030220 oncology & carcinogenesisMedicineCellular Structures and OrganellesSignal transductionResearch Articlemedicine.drugCell biologySignal InhibitionEpithelial-Mesenchymal TransitionCell Survivalmedicine.drug_classScienceSMAD signalingProtein Serine-Threonine KinasesResearch and Analysis MethodsPeptides CyclicTransforming Growth Factor beta103 medical and health sciencesCell Line TumorGene Expression and Vector TechniquesCell AdhesionBiomarkers TumormedicineHumansNeoplasm InvasivenessEpithelial–mesenchymal transitionMolecular Biology TechniquesLung cancerMolecular BiologyA549 cellMolecular Biology Assays and Analysis TechniquesBiology and life sciencesCancers and NeoplasmsIntegrin alphaVbeta3medicine.diseaseNon-Small Cell Lung Cancer030104 developmental biologyTGF-beta signaling cascadeA549 CellsTNIKCancer cellCancer researchPLOS ONE
researchProduct

Design, synthesis and preliminary evaluation of dopamine-amino acid conjugates as potential D1 dopaminergic modulators.

2016

Abstract The dopamine-amino acid conjugate DA-Phen was firstly designed to obtain a useful prodrug for the therapy of Parkinson's disease, but experimental evidence shows that it effectively interacts with D1 dopamine receptors (D1DRs), leading to an enhancement in cognitive flexibility and to the development of adaptive strategies in aversive mazes, together with a decrease in despair-like behavior. In this paper, homology modelling, molecular dynamics, and site mapping of D1 receptor were carried out with the aim of further performing docking studies on other dopamine conjugates compared with D1 agonists, in the attempt to identify new compounds with potential dopaminergic activity. Two n…

0301 basic medicineDopamineDopamine AgentsChemistry Techniques SyntheticPharmacology01 natural sciencesDocking03 medical and health sciencesDopamine receptor D1Drug StabilityDopamineCatalytic DomainDrug DiscoverymedicineAnimalsHumansAmino Acidschemistry.chemical_classificationConjugatePharmacologyPCA010405 organic chemistryChemistrySynthesiDrug Discovery3003 Pharmaceutical ScienceReceptors Dopamine D1DopaminergicOrganic ChemistryBrainGeneral MedicineProdrug0104 chemical sciencesAmino acidAmino acidRatsMolecular Docking Simulation030104 developmental biologyBiochemistryDocking (molecular)Dopamine receptorDrug DesignMolecular modellingConjugatemedicine.drugEuropean journal of medicinal chemistry
researchProduct

Analysis of substrate binding in individual active sites of bifunctional human ATIC

2018

Aminoimidazolecarboxamide ribonucleotide formyl transferase (AICARFT): Inosine monophosphate cyclohydrolase (IMPCH, collectively called ATIC) is a bifunctional enzyme that catalyses the penultimate and final steps in the purine de novo biosynthesis pathway. The bifunctional protein is dimeric and each monomer contains two different active sites both of which are capable of binding nucleotide substrates, this means to a potential total of four distinct binding events might be observed. Within this work we used a combination of site-directed and truncation mutants of ATIC to independently investigate the binding at these two sites using calorimetry. A single S10W mutation is sufficient to blo…

0301 basic medicineHydroxymethyl and Formyl TransferasesModels MolecularRibonucleotideStereochemistryBiophysicsBiochemistryAnalytical ChemistrySubstrate Specificity03 medical and health scienceschemistry.chemical_compoundMultienzyme ComplexesCatalytic DomainTransferaseHumansNucleotidePhosphofructokinase 2Bifunctional enzymesMolecular Biologychemistry.chemical_classification030102 biochemistry & molecular biologybiologyNucleotidesActive siteCooperative bindingIsothermal titration calorimetryXanthosine monophosphate030104 developmental biologyBiochemistrychemistryNucleotide DeaminasesMultiple binding sitesbiology.proteinIsothermal titration calorimetryProtein Binding
researchProduct

Bioactive triterpenes of protium heptaphyllum gum resin extract display cholesterol-lowering potential

2021

Hypercholesterolemia is one of the major causes of cardiovascular disease, the risk of which is further increased if other forms of dyslipidemia occur. Current therapeutic strategies include changes in lifestyle coupled with drug administration. Statins represent the most common therapeutic approach, but they may be insufficient due to the onset of resistance mechanisms and side effects. Consequently, patients with mild hypercholesterolemia prefer the use of food supplements since these are perceived to be safer. Here, we investigate the phytochemical profile and cholesterol-lowering potential of Protium heptaphyllum gum resin extract (PHE). Chemical characterization via HPLC-APCI-HRMS2 and…

0301 basic medicineModels MolecularProtein ConformationDrug Evaluation Preclinical030204 cardiovascular system & hematologyPharmacologyPPARαTerpenelcsh:ChemistryPCSK9chemistry.chemical_compound0302 clinical medicineCatalytic DomainSettore BIO/10 - BiochimicaPlant Gumslcsh:QH301-705.5SpectroscopyChromatography High Pressure LiquidFlame IonizationMonacolinChemistryAnticholesteremic AgentsGeneral MedicineComputer Science ApplicationsMolecular Docking SimulationCholesterolPhytochemicalMolecular dockinglipids (amino acids peptides and proteins)Breu brancoStatinmedicine.drug_classHypercholesterolemiaArticleCatalysisGas Chromatography-Mass SpectrometryInorganic Chemistry03 medical and health sciencesNutraceuticalmedicineHumansLovastatinPhysical and Theoretical ChemistryMolecular BiologyOleananeHMGCREnzymatic activityCholesterolPCSK9Organic ChemistryStatinSettore CHIM/08 - Chimica FarmaceuticaTriterpenes030104 developmental biologyhypercholesterolemia; gene expression; HMGCR; PCSK9; PPARα; enzymatic activity; molecular docking; statin; monacolin; breu brancolcsh:Biology (General)lcsh:QD1-999Breu branco; Enzymatic activity; Gene expression; HMGCR; Hypercholesterolemia; Molecular docking; Monacolin; PCSK9; PPARα; StatinLDL receptorDietary SupplementsHepatocytesSettore BIO/14 - FarmacologiaGene expressionHydroxymethylglutaryl-CoA Reductase InhibitorsResins PlantHydrogen
researchProduct

Free-energy studies reveal a possible mechanism for oxidation-dependent inhibition of MGL

2016

AbstractThe function of monoacylglycerol lipase (MGL), a key actor in the hydrolytic deactivation of the endocannabinoid 2-arachidonoyl-sn-glycerol (2AG), is tightly controlled by the cell’s redox state: oxidative signals such as hydrogen peroxide suppress MGL activity in a reversible manner through sulfenylation of the peroxidatic cysteines, C201 and C208. Here, using as a starting point the crystal structures of human MGL (hMGL), we present evidence from molecular dynamics and metadynamics simulations along with high-resolution mass spectrometry studies indicating that sulfenylation of C201 and C208 alters the conformational equilibrium of the membrane-associated lid domain of MGL to favo…

0301 basic medicineOxidative phosphorylationMolecular Dynamics SimulationRedoxArticle03 medical and health scienceschemistry.chemical_compoundCatalytic DomainHumansCysteineHydrogen peroxideMultidisciplinary030102 biochemistry & molecular biologybiologyHydrogen bondMetadynamicsActive siteSubstrate (chemistry)Hydrogen BondingHydrogen PeroxideMonoacylglycerol LipasesMonoacylglycerol lipase030104 developmental biologyBiochemistrychemistrybiology.proteinBiophysicsThermodynamicsOxidation-ReductionProtein Processing Post-TranslationalProtein BindingScientific Reports
researchProduct

Discovery and validation of 2-styryl substituted benzoxazin-4-ones as a novel scaffold for rhomboid protease inhibitors

2017

Abstract Rhomboids are intramembrane serine proteases with diverse physiological functions in organisms ranging from archaea to humans. Crystal structure analysis has provided a detailed understanding of the catalytic mechanism, and rhomboids have been implicated in various disease contexts. Unfortunately, the design of specific rhomboid inhibitors has lagged behind, and previously described small molecule inhibitors displayed insufficient potency and/or selectivity. Using a computer-aided approach, we focused on the discovery of novel scaffolds with reduced liabilities and the possibility for broad structural variations. Docking studies with the E. coli rhomboid GlpG indicated that 2-styry…

0301 basic medicineProteasesSerine Proteinase InhibitorsStereochemistrymedicine.medical_treatmentClinical BiochemistryPharmaceutical ScienceBiochemistryStyrenesSerine03 medical and health sciencesCatalytic DomainEndopeptidasesDrug DiscoveryEscherichia coliSerinemedicineAnimalsChymotrypsinDrosophila ProteinsHumansMolecular BiologyEnzyme AssaysSerine proteaseProtease030102 biochemistry & molecular biologybiologyBenzoxazinonesChemistryEscherichia coli ProteinsRhomboid proteaseRhomboidOrganic ChemistryMembrane ProteinsTransforming Growth Factor alphaBenzoxazinesDNA-Binding ProteinsMolecular Docking Simulation030104 developmental biologyDocking (molecular)Mutationbiology.proteinMolecular MedicineCattleDrosophilaBioorganic & Medicinal Chemistry Letters
researchProduct

Searching for Chymase Inhibitors among Chamomile Compounds Using a Computational-Based Approach

2018

Inhibitors of chymase have good potential to provide a novel therapeutic approach for the treatment of cardiovascular diseases. We used a computational approach based on pharmacophore modeling, docking, and molecular dynamics simulations to evaluate the potential ability of 13 natural compounds from chamomile extracts to bind chymase enzyme. The results indicated that some chamomile compounds can bind to the active site of human chymase. In particular, chlorogenic acid had a predicted binding energy comparable or even better than that of some known chymase inhibitors, interacted stably with key amino acids in the chymase active site, and appeared to be more selective for chymase than other …

0301 basic medicineProteaseschlorogenic acidlcsh:QR1-502030204 cardiovascular system & hematologyMolecular Dynamics SimulationCrystallography X-RayLigandsBiochemistrylcsh:MicrobiologyArticleSerine03 medical and health sciences0302 clinical medicineChymasesCatalytic DomainHumanschamomilecardiovascular diseases; chamomile; chlorogenic acid; chymase; docking; matricin; molecular dynamics simulations; pharmacophore; Biochemistry; Molecular BiologyEnzyme InhibitorsMolecular Biologychymasechemistry.chemical_classificationBinding SitesbiologypharmacophoreChymaseActive sitemolecular dynamics simulationsmatricinAmino acidcardiovascular diseasesMolecular Docking Simulation030104 developmental biologyEnzymechemistryBiochemistryDocking (molecular)dockingbiology.proteinPharmacophoreBiomolecules
researchProduct

Dissecting the role of ADAM10 as a mediator of Staphylococcus aureus α-toxin action

2016

Staphylococcus aureus is a leading cause of bacterial infections in humans, including life-threatening diseases such as pneumonia and sepsis. Its small membrane-pore-forming α-toxin is considered an important virulence factor. By destroying cell–cell contacts through cleavage of cadherins, the metalloproteinase ADAM10 (a disintegrin and metalloproteinase 10) critically contributes to α-toxin-dependent pathology of experimental S. aureus infections in mice. Moreover, ADAM10 was proposed to be a receptor for α-toxin. However, it is unclear whether the catalytic activity or specific domains of ADAM10 are involved in mediating binding and/or subsequent cytotoxicity of α-toxin. Also, it is not k…

0301 basic medicineStaphylococcus aureusADAM10Bacterial Toxinsmedicine.disease_causeBiochemistryVirulence factorADAM10 ProteinHemolysin ProteinsMice03 medical and health sciencesCatalytic DomainmedicineDisintegrinAnimalsMolecular BiologyFurinCells CulturedMice KnockoutMetalloproteinasebiologyCadherinCell MembraneCell BiologyStaphylococcal InfectionsCadherinsCell biology030104 developmental biologyBiochemistryStaphylococcus aureusbiology.proteinCalciumIntracellularProtein BindingBiochemical Journal
researchProduct

Targeting Bacterial Sortase A with Covalent Inhibitors: 27 New Starting Points for Structure-Based Hit-to-Lead Optimization.

2019

Because of its essential role as a bacterial virulence factor, enzyme sortase A (SrtA) has become an attractive target for the development of new antivirulence drugs against Gram-positive infections. Here we describe 27 compounds identified as covalent inhibitors of

0301 basic medicineStaphylococcus aureusMagnetic Resonance SpectroscopyAntivirulenceVirulence Factors030106 microbiologySmall Molecule Libraries03 medical and health sciencesMiceBacterial ProteinsCatalytic DomainDrug DiscoveryAnimalschemistry.chemical_classificationBinding SitesChemistryHit to leadFibroblastsAminoacyltransferasesAnti-Bacterial AgentsMolecular Docking SimulationCysteine Endopeptidases030104 developmental biologyInfectious DiseasesEnzymeBiochemistryCovalent bondSortase ABacterial virulenceNIH 3T3 CellsStructure basedACS infectious diseases
researchProduct